

Entwicklungsmethoden

Prof. Dr. Josef M. Joller jjoller@hsr.ch

HAAS & PARTNER

PLANEN UND SCHÄTZEN

Übersicht

Planen der Projekte

Abschätzung der Kosten / des Aufwandes

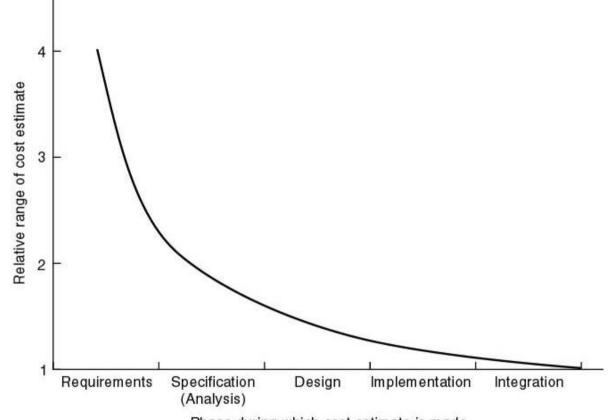
Vor der Entwicklung neuer SW oder einem IT Projekt muss das Projekt im Detail geplant werden.

Die Planung wird laufend ergänzt und verbessert

- die erste Grobplanung reicht nicht
- eine detaillertere Planung ist erst nach zusätzlichem Wissen möglich

Aufwandschätzungen sind wichtig - aber wie?

Kostenschätzungen sind wichtig - aber wie?


Kosten setzen sich aus unterschiedlichen Kostenarten zusammen

Aber SW / IT Projekte sind in der Regel zu komplex!

Planung des SW / IT Prozesses

Phase during which cost estimate is made

Exakte Planung ist erst recht spät möglich

Planung der IT Projekte

Beispiel

- Kostenschätzung: \$1 Mio in der Anforderungsphase
 - echte Kosten werden im Bereich (\$0.25M, \$4M) liegen
- Kostenschätzung: \$1 Mio in der Spezifikationsphase
 - echte Kosten werden im Bereich (\$0.5M, \$2M) liegen
- Kostenschätzung: \$1 Mio am Ende der Spezifikationsphase
 - echte Kosten werden im Bereich (\$0.67M, \$1.5M) liegen

Das Modell ist alt (1976)

- die Aufwandschätzungsmethoden sind besser geworden
- aber die Kurve gilt immer noch (einfach nicht mehr so extrem)

Sackman (1968) zeigte, dass Programmierer von 1 bis 28 fache Produktivität zeigen können (Superprogrammer)

Die Studie berücksichtigte

- Produktgrösse
- Produkt-Ausführungszeit
- Entwicklungszeit
- Prgrammierzeit
- Testzeit

Zu beachten:

was passiert, wenn ein Top Entwickler ausfällt?

Development Methodologies

© Prof. Dr. Josef M. Joller

Metriken betreffend Projektgrösse

Typische Metriken

- Lines of Code (LOC)
- Wissenschaftliche Ansätze (funktionieren in der Regel nicht)
- Function Points
- COCOMO und Varianten davon
- und viele weitere Techniken

Lines of Code

Lines of code (LOC) oder

Tausend angelieferte Programmzeilen (KDSI)

- allerdings ist der Programmcode nur ein kleiner Teil des gesamten SW Aufwandes
- je nach Programmiersprache resultieren unterschiedlich viele Programmzeilen
- LOC ist beim Einsatz spezieller Programmiersprachen (wie LISP) kaum ein sinnvolles Mass
- wie sollen die Programmzeilen gezählt werden?
 - Ausführbare Programmzeilen?
 - Datendefinitionen?
 - Kommentare?
 - Betriebsystemanweisungen?
 - Geänderte und gelöschte Zeilen?

Lines of Code

LOC kennt man erst am Ende des Projekts

Das Schätzen der LOC ist sehr wackelig

- am Anfang des Projekts muss die LOC des Endprodukts abgeschätzt werden
- LOC wird als Eingabe für viele Werkzeuge für die Aufwandschätzung eingesetzt

Gutes Modell bei mittel grossen Projekten

Parameter der FFP Methode / Metrik

Files, Flows, Prozesse

Anzahl Files (Fi), Flows (FI), Prozesse (Pr)

Grösse (Size :S), Kosten (cost :C) werden abgeschätzt:

• S = Fi + FI + Pr

• $C = b \times S$

Die Konstante b muss der Organisation angepasst werden

Dieses Modell funktioniert, aber es gibt keine veröffentlichten Daten für moderne Systeme mit Datenbanken, ...

Basis: Inputs (Inp), Outputs (Out), Abfragen (inquiries :Inq), Stammdaten (master files ;Maf), Interfaces (Inf)

Die Anzahl Funktionspunkte berechnet sich als

• FP = $4 \times Inp + 5 \times Out + 4 \times Inq + 10 \times Maf + 7 \times Inf$

Allerdings ist diese Formel zu einfach.

Development Methodologies

Function Points

- 1. Klassifizieren Sie jede Komponente (Inp, Out, Inq, Maf, Inf) gemäss folgendem Schema als "simple", "average" oder "complex".
 - Je nach Komplexität ergeben sich eine bestimmte Anzahl Punkte
 - die Summe bezeichnet man als UFP (unadjusted function points)

Level of Complexity

Component	Simple	Average	Complex
Input item	3	4	6
Output item	4	5	7
Inquiry	3	4	6
Master file	7	10	15
Interface	5	7	10

Development Methodologies

© Prof. Dr. Josef M. Joller

Function Points

2. Dann berechnet man die Technische Komplexität (TCF)

- ein Wert 0 ("not present")
 bis 5 ("strong influence throughout") wird für jeden der14 Faktoren festgelegt
- alle 14 Zahlen werden zusammengezählt ⇒ degree of influence (DI)

$$TCF = 0.65 + 0.01 \times DI$$

- der Technical Complexity Factor (TCF) liegt zwischen 0.65 und 1.35
- 3. Die Anzahl der Function Points (FP) ergibt sich zu

$$FP = UFP \times TCF$$

- 1. Data communication
- 2. Distributed data processing
- 3. Performance criteria
- 4. Heavily utilized hardware
- 5. High transaction rates
- 6. Online data entry
- 7. End-user efficiency
- 8. Online updating
- Complex computations
- 10. Reusability
- 11. Ease of installation
- 12. Ease of operation
- 13. Portability
- 14. Maintainability

Function Points sind in der Regel eine bessere Schätzmethode als KDSI (Kilo delivered source instructions)

Einige publizierten Ergebnisse:

"Errors in excess of 800% counting KDSI, but only 200% in counting function points" (Jones, 1987)

Aber auch bei dieser Methode sind einige Parameter schlecht mess/abschätzbar.

Development Methodologies

Techniken für die Kostenschätzung

Expertenmeinungen sind das Beste!

Der Experte vergleicht das zu erstellende mit einem erstellten Produkt

- allerdings kann er sich auch täuschen
- der Experte hat vielleicht falsche Projektdaten
- menschliche Experten sind voreingenommen
- mehrere Experten liefern in der Regel gute Resultate

Bottom-up Approach

- zerlegen Sie das Projekt in kleinere
- kleinere Projekte lassen sich besser abschätzen