
Development Methodologies © Prof. Dr. Josef M. Joller 1

Slide 6.1

Development Methodologies

Prof. Dr. Josef M. Joller
jjoller@hsr.ch

Development Methodologies © Prof. Dr. Josef M. Joller 2

Slide 6.2Session 6

REUSABILITY,
PORTABILITY, AND
INTEROPERABILITY

Development Methodologies © Prof. Dr. Josef M. Joller 3

Slide 6.3Overview

Reuse concepts

Impediments to reuse

Reuse case studies

Objects and reuse

Reuse during the design and implementation phases

Reuse and maintenance

Portability

Techniques for achieving portability

Interoperability

Development Methodologies © Prof. Dr. Josef M. Joller 4

Slide 6.4Reuse Concepts

Two types of reuse
w Accidental reuse

• First, product is built
• Then, parts put into part database for reuse

w Planned reuse
• First, reusable parts are constructed
• Then, products are built using these parts

Development Methodologies © Prof. Dr. Josef M. Joller 5

Slide 6.5Why reuse?

Minor Reason
w It is expensive to design, implement, test, and document software
w Only 15% of new code serves an original purpose (average)
w Reuse of parts saves

• Design costs
• Implementation costs
• Testing costs
• Documentation costs

Major Reason
w Maintenance

Maintenance consumes two-thirds of software cost

Development Methodologies © Prof. Dr. Josef M. Joller 6

Slide 6.6Impediments to Reuse

Not invented here (NIH) syndrome

Concerns about faults in potentially reusable routines

Storage–retrieval

Cost of reuse!

Reuse Rate
w Theoretical maximum is 85%
w What can we get in practice?
w Consider case studies (1975 through 2000)

Development Methodologies © Prof. Dr. Josef M. Joller 7

Slide 6.7Raytheon Missile Systems Division

Data-processing software

Planned reuse of
w Designs

• 6 code templates

w COBOL code
• 3200 reusable modules

Reuse rate 60% (1976–1982)

Development Methodologies © Prof. Dr. Josef M. Joller 8

Slide 6.8GTE Data Services

Data-processing software

Strongly encouraged by management
w Cash incentives when module was accepted for reuse
w Cash incentive when module was reused

Accidental reuse of
w Modules

Reuse rate
w (1988) 15% reused code, $1.5 million saved
w (est. 1989) 20% reused code
w (est. 1993) 50% reused code

Development Methodologies © Prof. Dr. Josef M. Joller 9

Slide 6.9European Space Agency

Ariane 5 rocket blew up 37 seconds after lift-off

Cost: $500 million

Reason: attempt to convert 64-bit integer into 16-bit unsigned integer,
without Ada exception handler

On-board computers crashed, so did rocket

Conversion was unnecessary
w Computations on the inertial reference system can stop 9 seconds before

lift-off
w But, if there is a subsequent hold in countdown, it takes several hours to

reset the inertial reference system
w Computations therefore continue 50 seconds into flight

Development Methodologies © Prof. Dr. Josef M. Joller 10

Slide 6.10European Space Agency (contd)

Cause of problem
w Ten years before, it was mathematically proven that overflow was

impossible—on the Ariane 4
w Because of performance constraints, conversions that could not lead

to overflow were left unprotected
w Software was used, unchanged and untested, on Ariane 5
w But, the assumptions for the Ariane 4 no longer held

Lesson
w Software developed in one context needs to be retested when

integrated into another context

Development Methodologies © Prof. Dr. Josef M. Joller 11

Slide 6.11Reuse During Design and Implementation

Design reuse
w Library or toolkit

• Make or buy

w Framework
• Domain specific
• Expensive to develop & maintain

w Design pattern
• Common technique

w Software architecture
• Common technique

Development Methodologies © Prof. Dr. Josef M. Joller 12

Slide 6.12Library or Toolkit

Set of reusable routines

Examples:
w Scientific software
w GUI class library or toolkit

The user is responsible for the
control logic (white in figure)

Development Methodologies © Prof. Dr. Josef M. Joller 13

Slide 6.13Application Framework

Control logic of the design

“Hot spots” (white in figure)

Faster than reusing toolkit

More of design is reused

The logic is usually harder to design than
the operations

Development Methodologies © Prof. Dr. Josef M. Joller 14

Slide 6.14Design Pattern

A solution to a general
design problem

In the form of a set of
interacting classes

The classes need to be
customized (white in
figure)

Development Methodologies © Prof. Dr. Josef M. Joller 15

Slide 6.15Reuse of Software Architecture

Architecture reuse can lead to large-scale reuse

One mechanism:
w Software product lines

Case study:
w Hewlett-Packard printers (1995 to 1998)

• Person-hours to develop firmware decreased by a factor of 4
• Time to develop firmware decreased by factor of 3
• Reuse has increased to over 70% of components

Development Methodologies © Prof. Dr. Josef M. Joller 16

Slide 6.16Objects and productivity

Reuse achieved
w Not via modules with functional cohesion,
w but via objects (informational cohesion) [classes]

In general
w Software costs have decreased
w Overall quality has improved
w Large products are essentially collection of smaller products

Development Methodologies © Prof. Dr. Josef M. Joller 17

Slide 6.17Difficulties and Problems

Learning curve
w Particularly noticeable with GUI

Problems with inheritance
w New subclass does not affect its superclass
w But, any change to a superclass affects all its subclasses
w Subclasses low in the inheritance tree can be huge (inherited

attributes)

Polymorphism and dynamic binding
w Maintenance problems were already discussed

Development Methodologies © Prof. Dr. Josef M. Joller 18

Slide 6.18Reuse - Why Portability?

Difficulties hampering portability
w One-off software
w Hardware incompatibility
w Lifetimes of software, hardware
w Multiple copy software

Portability saves money!

Portable system software
w Isolate implementation-dependent pieces

• UNIX kernel, device-drivers

w Levels of abstraction
• Graphics

Development Methodologies © Prof. Dr. Josef M. Joller 19

Slide 6.19Portability Strategies

Portable application software
w Use popular language
w Use popular operating system
w Adhere to language standards
w Avoid numerical incompatibilities
w Excellent documentation

Development Methodologies © Prof. Dr. Josef M. Joller 20

Slide 6.20Future Trends in Interoperability

.NET (not yet), JAVA and CORBA are currently the “big’s”

Other interoperability products may succeed, such as
Java EnterpriseBeans (EJB’s)
w Session / Transaction,
w Entity / DB,
w Message-Driven / Messaging

Web-based applications need to be integrated into
client–server products
w XML (Extensible Markup Language) will probably play a major role
w XML Protocol (SOAP, Web Services) based services

