
Slide 5.1

Development Methodologies © Prof. Dr. Josef M. Joller 1

Development Methodologies

Prof. Dr. Josef M. Joller
jjoller@hsr.ch

Slide 5.2

Development Methodologies © Prof. Dr. Josef M. Joller 2

Session 5

THE TOOLS
OF THE TRADE

Slide 5.3

Development Methodologies © Prof. Dr. Josef M. Joller 3

Overview

 Stepwise refinement

 Cost–benefit analysis

 Software metrics

 CASE

 Taxonomy of CASE

 Scope of CASE

 Software versions

 Configuration control

 Build tools

Slide 5.4

Development Methodologies © Prof. Dr. Josef M. Joller 4

Stepwise Refinement

A basic principle underlying many software engineering
techniques
w “Postpone decisions as to details as late as possible to be able

to concentrate on the important issues”

Miller’s law (1956)
w A human being can concentrate on 7±2 items at a time

Slide 5.5

Development Methodologies © Prof. Dr. Josef M. Joller 5

Appraisal of Stepwise Refinement

A basic principle used in
w Every phase
w Every representation

The power of stepwise refinement
w The software engineer can concentrate on the

relevant aspects

Warning
w Miller’s Law is a fundamental restriction on the

mental powers of human beings

Slide 5.6

Development Methodologies © Prof. Dr. Josef M. Joller 6

Cost–Benefit Analysis

Compare estimated future benefits, costs
w Estimate costs
w Estimate benefits
w State all assumptions explicitly

Sources
w Boehm : Software Engineering Economics (old but still okay)
w Inhouse project data

Slide 5.7

Development Methodologies © Prof. Dr. Josef M. Joller 7

CASE (Computer-Aided Software Engineering)

Scope of CASE
w Can support the entire life-cycle

Graphical display tools (many for PCs)
w Data flow diagrams
w Entity-relationship diagrams
w Module-interconnection diagrams
w Petri nets
w Structure charts

Slide 5.8

Development Methodologies © Prof. Dr. Josef M. Joller 8

Software Metrics

To detect problems early, it is essential to measure

Examples:
w LOC per month
w Defects per 1000 lines of code
w Number of screens
w Number of reports
w Number of objects
w …

Slide 5.9

Development Methodologies © Prof. Dr. Josef M. Joller 9

Different Types of Metrics

Product Metrics
w Examples:

• Size of product
• Reliability of product

Process Metrics
w Example:

• Efficiency of fault detection during development

Metrics specific to a given phase
w Example:

• Number of defects detected per hour in specification reviews

Slide 5.10

Development Methodologies © Prof. Dr. Josef M. Joller 10

The Five Basic Metrics

Size
w In Lines of Code, or better

Cost
w In dollars

Duration
w In months

Effort
w In person months

Quality
w Number of faults detected

Slide 5.11

Development Methodologies © Prof. Dr. Josef M. Joller 11

Taxonomy of CASE

UpperCASE versus lowerCASE

Tool versus workbench versus environment

Slide 5.12

Development Methodologies © Prof. Dr. Josef M. Joller 12

Graphical Tool

Additional features
w Data dictionary
w Screen and report generators
w Consistency checker; the various views are

always consistent
• Specifications and design workbench

Online Documentation
w Problems with

• Manuals
• Updating

Essential online documentation
w Help information
w Programming standards
w Manuals

Slide 5.13

Development Methodologies © Prof. Dr. Josef M. Joller 13

Essential Coding Tools

Coding tools
w Products (such as text editors, debuggers, and pretty printers,

interface checkers) designed to
• Simplify programmer’s task
• Reduce frustration
• Increase programmer productivity

Conventional coding scenario for programming-in-the-small
w Editor-compiler cycle
w Editor-compiler-linker cycle
w Editor-compiler-linker-execute cycle

“There must be a better way”

Slide 5.14

Development Methodologies © Prof. Dr. Josef M. Joller 14

Syntax-directed Editor

“Understands” language
w Speeds up implementation
w User interface of an editor is different to that of a compiler

• There is no need to change thinking mode
• No mental energy is wasted on these adjustments

w One piece of system software, two languages
• High-level language of module
• Editing command language

w Pretty-printer

Slide 5.15

Development Methodologies © Prof. Dr. Josef M. Joller 15

Source Level Debugger

The programmer works in a high-level language, but must
examine
w Machine code core dumps
w Assembler listings
w Linker listings
w Similar low-level documentation

Destroys the advantage of programming in a high-level
language

We need
w Interactive source level debugger

Slide 5.16

Development Methodologies © Prof. Dr. Josef M. Joller 16

Programming Workbench

Structure editor with
w Online interface checking capabilities
w Operating system front-end
w Online documentation
w Source level debugger

Constitutes a simple programming environment

This is by no means new
w All the above features are supported by FLOW (1980)
w The technology has been in place for years

Surprisingly, some programmers still implement code Ye Olde-
Fashioned Way

Slide 5.17

Development Methodologies © Prof. Dr. Josef M. Joller 17

Revisions and Variations

Variation
w Version for different operating system–hardware
w Variations are designed to coexist in parallel

Slide 5.18

Development Methodologies © Prof. Dr. Josef M. Joller 18

Configuration Control

Every module exists in
three forms
w Source code; object

code; executable
load image

Configuration
w Version of each

module from which
a given version of a
product is built

Slide 5.19

Development Methodologies © Prof. Dr. Josef M. Joller 19

Build Tools

Example
w UNIX make
w Apache ant

Compares the date and time stamp on
w Source code, object code
w Object code, executable load image

Can check dependencies
w Ensures that correct versions/variations are compiled and

linked

Slide 5.20

Development Methodologies © Prof. Dr. Josef M. Joller 20

Productivity Gains with CASE Tools

Survey of 45 companies in 10 industries [Myers, 1992]
w Half information systems
w Quarter scientific
w Quarter real-time aerospace

Results
w About 10% annual productivity gains
w $125,000 per seat

Justifications for CASE
w Faster development
w Fewer faults
w Easier maintenance
w Improved morale

