
Development Methodologies © Prof. Dr. Josef M. Joller 1

Slide 1.1

Development Methodologies

Prof. Dr. Josef M. Joller
jjoller@hsr.ch



Development Methodologies © Prof. Dr. Josef M. Joller 2

Slide 1.2Session 1

SCOPE



Development Methodologies © Prof. Dr. Josef M. Joller 3

Slide 1.3Outline

Historical aspects

Economic aspects

Maintenance aspects

Specification and design aspects

Team programming aspects

The object-oriented paradigm

Terminology



Development Methodologies © Prof. Dr. Josef M. Joller 4

Slide 1.4Scope of Software Engineering

Historical Aspects
1968 NATO Conference, Garmisch
Aim: to solve the “Software Crisis”
Software is delivered

• Late
• Over budget
• With residual faults



Development Methodologies © Prof. Dr. Josef M. Joller 5

Slide 1.5Scope of Software Engineering (contd)

Why cannot bridge-building techniques be used 
to build operating systems? 

Attitude to collapse
Imperfect engineering
Complexity
Maintenance



Development Methodologies © Prof. Dr. Josef M. Joller 6

Slide 1.6Economic Aspects

Economically viable techniques

Coding method CMnew is 10% faster than currently used 
method CMold.  Should it be used?

Common sense answer 
• Of course!

Software Engineering answer 
• Consider the effect of CMnew on maintenance 



Development Methodologies © Prof. Dr. Josef M. Joller 7

Slide 1.7Maintenance Aspects

Software Life Cycle
The way we produce software, including

• The life-cycle model
• The individuals
• CASE tools



Development Methodologies © Prof. Dr. Josef M. Joller 8

Slide 1.8Life-cycle model

1. Requirements phase

2. Specification phase

3. Design phase

4. Implementation phase

5. Integration phase (in parallel with 4)

6. Maintenance phase

7. Retirement



Development Methodologies © Prof. Dr. Josef M. Joller 9

Slide 1.9Approximate Relative Cost of Each Phase

1976–1981 data

Maintenance constitutes 67% of total cost



Development Methodologies © Prof. Dr. Josef M. Joller 10

Slide 1.10Comparative Relative Cost of Each Phase



Development Methodologies © Prof. Dr. Josef M. Joller 11

Slide 1.11Good and Bad Software

Good software is maintained—bad software    is discarded

Different types of maintenance
Corrective maintenance [about 20%]
Enhancement

• Perfective maintenance [about 60%]
• Adaptive maintenance [about 20%]

Effect of CMnew on maintenance
How much can we improve the maintenance phase?



Development Methodologies © Prof. Dr. Josef M. Joller 12

Slide 1.12Specification and Maintenance Faults

60 to 70 percent of faults are specification and design faults

Data of Kelly, Sherif, and Hops [1992]
1.9 faults per page of specification
0.9 faults per page of design
0.3 faults per page of code

Faults at end of the design phase of the new version of the 
product

13% of faults from previous version of product
16% of faults in new specifications
71% of faults in new design



Development Methodologies © Prof. Dr. Josef M. Joller 13

Slide 1.13Cost to Detect and Correct a Fault



Development Methodologies © Prof. Dr. Josef M. Joller 14

Slide 1.14Team Programming Aspects

Hardware is cheap
We can build products that are too large to be written by one 
person in the available time

Teams
Interface problems
Meetings
Qualification
New technologies
Fast changing business environment



Development Methodologies © Prof. Dr. Josef M. Joller 15

Slide 1.15The Object-Oriented Paradigm

The structured paradigm had great successes initially
It started to fail with larger products (> 50,000 LOC)

Maintenance problems (today, up to 80% of effort)

Reason: structured methods are 
Action oriented (finite state machines, data flow diagrams); 
or 
Data oriented (entity-relationship diagrams, Jackson’s 
method);
But not both (Objects are!)



Development Methodologies © Prof. Dr. Josef M. Joller 16

Slide 1.16The Object-Oriented Paradigm (contd)

Both data and actions are of equal importance

Object: 
Software component that incorporates both data and the 
actions that are performed on that data

Example:
Bank account

• Data: account balance
• Actions: deposit, withdraw, determine balance



Development Methodologies © Prof. Dr. Josef M. Joller 17

Slide 1.17Key Aspects of Object-Oriented Solution

Conceptual independence
Encapsulation

Physical independence 
Information hiding

Impact on development
Physical counterpart

Impact on maintenance
Independence effects



Development Methodologies © Prof. Dr. Josef M. Joller 18

Slide 1.18Responsibility-Driven Design

Also called “Design by Contract”

Send flowers to your aunt in Iowa City
Call 1-800-FLOWERS
Where is 1-800-FLOWERS?
Which Iowa City florist does the delivery?
Information hiding

Object-oriented paradigm
“Send a message to a method [action] of an object“



Development Methodologies © Prof. Dr. Josef M. Joller 19

Slide 1.19Transition From Analysis to Design

Structured paradigm:
Jolt between analysis (what) and design (how)

Object-oriented paradigm:
Objects enter from very beginning



Development Methodologies © Prof. Dr. Josef M. Joller 20

Slide 1.20Analysis/Design “Hump”

Systems analysis
Determine what has to be done

Design
Determine how to do it
Architectural design—determine modules
Detailed design—design each module



Development Methodologies © Prof. Dr. Josef M. Joller 21

Slide 1.21Removing the “Hump”

Object-oriented analysis
Determine what has to be done
Determine the objects

Object-oriented design
Determine how to do it
Design the objects



Development Methodologies © Prof. Dr. Josef M. Joller 22

Slide 1.22In More Detail

Objects enter here


	Development Methodologies
	Session 1
	Outline
	Scope of Software Engineering
	Scope of Software Engineering (contd)
	Economic Aspects
	Maintenance Aspects
	Life-cycle model
	Approximate Relative Cost of Each Phase
	Comparative Relative Cost of Each Phase
	Good and Bad Software
	Specification and Maintenance Faults
	Cost to Detect and Correct a Fault
	Team Programming Aspects
	The Object-Oriented Paradigm
	The Object-Oriented Paradigm (contd)
	Key Aspects of Object-Oriented Solution
	Responsibility-Driven Design
	Transition From Analysis to Design
	Analysis/Design “Hump”
	Removing the “Hump”
	In More Detail

