Enterprise Java

L ocating CORBA objectsusing Java I DL

L earn how to use stringification and the COS Naming Service to find CORBA
objects spread around the enterprise

Summary

Implementing CORBA objectsis no trivial matter. In fact, it's afeat worthy of around of
high fives. Once the celebration subsides and everyone has left your cube suitably
impressed with your coding talents, you must figure out how to publish your new object
so that any computer on the enterprise can easily locate it. What else would you use but a

naming service?

In this month's Enter prise Java column, Andy Krumel examines the naming facilities
specified in the CORBA standard and several proprietary extensions implemented by
CORBA vendors. (4,000 words)

Note: This article assumes you have an understanding of the CORBA standard and
CORBA IDL. Alink to a CORBA tutorial is provided at the end of the article.

By Andy Krumel

One of the longest weeks in my programming career was the one | spent attempting to combine
a CORBA object implemented using Visigenic's VisiBroker for Java with a client using JDK
1.2 beta 2.
Obvioudly, this was awhile ago since Java 2 was released very recently and Visigenic
subsequently has been swallowed by Borland, which morphed into Inprise. Anyway, ever the
one who likes to stick to standard protocols and APIs, | originally implemented the server and
client applications using the Java IDL API integrated into the JDK. Playing safe, the server and
client relied on the standard CORBA naming service for locating the CORBA object. All went
according to schedule until the server's default Java IDL ORB was replaced with Visigenic's
ORB. If | used the VisiBroker Naming Service implementation, the client could not locate the
naming service, and if | used the Java IDL implementation, the server could not locate the
naming service. Pow-- instant headache!
Had | finally been let down by open standards? Had 11OP really not made it possible for multiple
ORBs o interoperate? Y es and No turned out to be the respective answers to those questions. As
usual, the Templar Knight in me ran off to do battle without first stopping to read the
specification's fine print or performing adequate prototyping. A little food, sleep and research
quickly solved the problem once al possible hacking (and I, myself) was exhausted.
| hope this article will prevent you from experiencing one of those dreaded weeks in which your
progress report simply says: "Fixed a bug by writing three lines of code.”

I nter oper able Object Reference (I0R)

The CORBA market provides many strategies, standards, and products for locating CORBA
objects, but only one mechanism works for al I[1OP-compliant CORBA implementations:
Interoperable Object References (I0Rs). When working in a multiple-ORB environment, an IOR
usually provides the only meansto obtain an initial reference to an object, be it a naming service,
transaction service, or customized CORBA servant.

ORBs supporting 110OP identify and publish object references using IORs. An IOR contains the
information required for a client ORB to connect to a CORBA object or servant. Specifically, an
IOR contains the following:

|1 OP version -- Describes the 11OP version implemented by the ORB
Host -- Identifies the TCP/IP address of the ORB's host machine
Port -- Specifies the TCP/IP port number where the ORB is listening for client requests
Key -- Vaue uniquely identifies the servant to the ORB exporting the servant
Components-- A sequence that contains additional information applicable to object method
invocations, such as supported ORB services and proprietary protocol support
In short, an IOR specifies the wire protocol for talking to an object as well as specifying the
object's network location.
The IOR structure isn't important to programmers, since an |OR is represented through a st ri ng
instance by a process known as stringification. Stringification is the process of converting a
servant reference to and/or from a string representation of an IOR. Once an object reference has
been stringified, it can be used by other applications to obtain a remote servant reference.
|ORs are convenient because they are easy to use and are ORB-implementati on-independent, but
they present asmall challenge: How does a client obtain a copy of the stringified IOR? Although
this article won't present any "real" solutions to this problem, let me offer afew possibilities:
Distributed filesystem-- The server process writes the stringified IOR to a known mount
point, or shared folder, to be read by client applications, assuming every system supports a
common distributed filesystem (NFS, Novell, Windows networking)
Web publishing -- The server process writes the stringified |OR to a known location in the
server's document root using a servlet or CGI script, enabling client programsto easily
retrieve stringified references from the Web server using the HTTP protocol
Database -- The server process writes the IOR to atable of IORs using a symbolic name as
the primary key value and client programs retrieve the IOR using any suitable database API
A future column will demonstrate how to use Java Naming and Directory Interface (JNDI) to
access naming and directory services, and then provide severa techniques to publish CORBA
objectsand IORs.
Using stringification
A CORBA object is uniquely identified by an object reference. The 11OP specification defines an
IOR as an ORB-independent object reference. Given a stringified object reference, aclient can
create a proxy that enables requests to be forwarded to the remote CORBA object. Java IDL,
along with the underlying OMG CORBA standard, defines two or g. ong. CORBA. ORB methods
used for stringification:
String object_to_string(org.ong. CORBA (bj ect o) -- Converts the given CORBA
object reference to a stringified IOR. Note: the string returned by this method is not
designed to be human readable, asis the case with the bj ect toString() method.
org. ong. CORBA. Obj ect string_to_object(String ior) -- Convertsastringified
|OR produced by the method obj ect _to_string() back to a CORBA object reference.
The stringification processisillustrated in Figure 1.

object to string(servant)

N

{Reference :
e T

Object string_tu_nhj ect ()
Figurel. Thestringification process

Example code
The following code sample creates a Si npl eCoj ect implementation, generates a stringified IOR,

and writesitto afilecalled si npl e. i or.
package i or;

i nport org. ony. CORBA. ORB;
i mport java.io.*;

public class |orServer {
public static void main(String args[]) throws | OException {
/lcreate object and register with ORB
Si npl eCbj ect I npl sinple = new Si npl eoj ect | npl ();

/[linitialize ORB and stringify object

OB orb = ORB.init(args, null);

String ior = orb.object_to_string(sinple);
Systemout.printIn("IOR " + ior);

/Iwite stringified object to file
FileWiter fw=new FileWiter("sinple.ior");
fwwite(ior);

fw. close();

/1block to prevent application fromtermnating
/1 CORBA does not create any user threads to service clients
Systemout.println("Ready for client requests to sinple object...");

try {
Thread. current Thread().j oin();

} catch(lnterruptedException ex) {}
| }
After using the command-line parameters to initialize the ORB, a stringified IOR is generated
using the obj ect _to_string(). The lOR iswritten to afile which the client program will read
to obtain the IOR. Java IDL does not create any user threads to service client requests, so the

program deadlocks the interpreter's thread to prevent the application from terminating. Running

the application yields the following output:
> java ior.lorServer

| OR: 000000000000001949444¢3a696f 722f 53696d706c654f 6262656374
3a312e3000000000000000010000000000000030000100000000000a737
465656€7261696€00079e00000018af abcaf €000000023bd4cf 8d00000008
0000000000000000

Ready for client requests to sinple object...

ThelOR may beast ri ng, but it certainly is not human readable.

For this simple example, | am going to run the client application from the same directory as the
| or Ser ver application. The client application initializes the ORB, reads in the stringified IOR

from thesi npl e. i or file, and convertsthe IOR to a Si npl ebj ect CORBA reference (proxy).
package ior;

i mport org. ong. CORBA. ORB;
i mport java.io.*;

public class lordient {
public static void main(String args[]) throws | OException {
/[linitialize ORB and stringify object
OB orb = ORB.init(args, null);

//read stringified object to file

Fil eReader fr = new Fil eReader("sinple.ior");
Buf f er edReader br = new BufferedReader (fr);
String ior = br.readLine();

org.ong. CORBA. (bj ect obj = orb.string_to_object(ior);
Si npl eCbj ect proxy = Si npl eQbj ect Hel per. narrow(obj);

//'i nvoke net hods
proxy. i nvoke();
Systemout. println("lnvoked met hod on sinple object");
}
}

In CORBA, the or g. ong. CORBA. (bj ect interface definesa CORBA proxy (object reference). It
isanalogoustoj ava. r ni . Renot e in RMI. The choice of the interface name is unfortunate, since
it collideswith thej ava. | ang. Qbj ect class nameif the or g. ong. CORBA package isimported.
But | digress.

Thestring_to_object () method returns a CORBA bj ect implementation, which refersto a
Si mpl eQbj ect servant. In Java, a program would typically down-cast the referenceto a

Si npl ebj ect and invoke the reference's methods.

When using CORBA, however, a narrow must be performed. Narrowing is performed using the

I DL -to-Java-compiler-generated XXxHel per class-- Si npl eQbj ect Hel per inthiscase.
Attempting asimple cast will cause ad assCast Except i on. Strange, but true.

COS Naming Service

The COS Naming Service is an OMG-specified extension to the core CORBA standard, where
COS stands for Common Object Service. This naming service allows an object to be published
using a symbolic name, and it allows client applications to obtain references to the object using a
standard API. The COS Naming Service can reside on any host accessible within the network
and enables applications to publish, lookup and list CORBA object references from any network
host.

A namespace is the collection of all hames bound to a naming service. A hame space may
contain naming context bindings to contexts located in another server. In such a case, the name
gpace is said to be a federated name space since it is a collection of hame spaces from multiple
servers. An interesting point is that the location of each context is transparent to the client
applications; they will have no knowledge that multiple servers are handling the resolution
requests for an object.

Java 2 ships with a compliant implementation of the COS Naming Service, called t nameser v.

The command-line syntax for running t naneserv is.
> tnaneserv [-ORBlInitial Port ####]

Thet naneser v runs on port 900 unless specified otherwise using the - ORBI ni ti al Por t
command-line parameter.

The Java DL COS Naming Service implementation supports transient bindings only, which
means objects must be reregistered each time the naming service is restarted. The COS Naming
Service implementations for lona and Inprise are much more sophisticated and scalable, since
they support persistent bindings, load balancing, and customization. The JDK t nanmeser v
naming service is more than adequate to get devel opers started on a project. When rolling out
your applications, you will want to purchase a commercial implementation to gain persistent
naming and load balancing capabilities.

A COS Naming Service stores object references in a hierarchical name space; much like a
filesystem uses a directory structure to store files. Specifically, bindings maintain the association
between a symbolic name and an object reference, while naming contexts are objects that
organize the bindings into a naming hierarchy. Like the root directory in afilesystem, theinitial
naming context provides a known point to build binding hierarchies. To complete the filesystem
analogy, a binding maps to afile and a naming context maps to a directory. Thus, a naming
context can contain multiple bindings and other naming contexts.

Consider a company that maintains an administrative database of devices on the network. These
devices implement an administrative CORBA interface that defines attributes for querying
current state and performing basic configuration tasks. Figure 2 depicts a possible naming

hierarchy and illustrates that the same object may occur in multiple places within a naming
hierarchy. For example, each printer is listed under a building and under printers.

initial naming context

building ® printers
461 » e 324 o] le] e}
‘ ontr 1 ooir2 potr 3
o o o o
patrl potr3 fax 1 pofr 2

Figure 2. Example naming hierarchy

Inthisarticle, adash (-) is used to separate each naming component. For example, bui | di ng-
461-fax 1 would denotethefax 1 node located under the 461 context, which happensto be
bound to the bui | di ng context. The name bui | di ng- 461- f ax 1 isknown as a compound name
because it consists of more than a single binding.

Getting theinitial naming context
Before performing any tasks using the COS Naming Service, you must obtain a reference to the
initial naming context. There are two standard ways to get the initial naming context:

I nitialization service -- The ORB class providesthe or g. ong. CORBA. (bj ect
resolve_initial _references(String name) method to obtain well-known services,
where the name parameter specifies the requested service. Example services include the
interface repository and the COS Naming Service. The name NanmeSer vi ce requests a
reference to the naming service. The following code demonstrates how to obtain a

reference to the COS Naming Service:
package i or;

i nport org.ongy. CosNam ng. *;

i mport org.ong. CosNani ng. Nam ngCont ext Package. Al r eadyBound;
i mport org. ong. CosNam ng. Nam ngCont ext Package. Cannot Pr oceed;
i mport org.ong. CosNanm ng. Nam ngCont ext Package. Not Found;

i mport org. ongy. CORBA. *;

public class Nam ngServer {
public static void main(String args[])
t hrows Not Found, Cannot Proceed,
or g. ong. CORBA. ORBPackage. | nval i dNarre,
or g. ong. CosNami ng. Nam ngCont ext Package. | nval i dNane
{

[linitialize ORB
ORB orb = ORB.init(args, null);

/lobtain reference to the nam ng service
or g. ong. CORBA. (bj ect obj Ref;
obj Ref = orb.resolve_initial_references(NS);

/I narrow reference to a Nam ngCont ext
Nam ngCont ext ncRef;
ncRef = Nam ngCont ext Hel per. narr ow obj Ref);

}
}
The ORB uses the parameters passed into i ni t () to locate the COS Naming Service on
the network. The Java DL ORB looks for the following parameters:

Once t

or g. ong. CORBA. ORBI ni ti al Host -- The host where the naming serviceis
running

org. ong. CORBA. ORBI ni ti al Port -- The port where the naming serviceis
listening
When specifying these properties on the command line, you can omit the or g. ong. CORBA
portion of the property name, but the full name should be specified if setting applet
parameters. The following invocation requests the ORB to locate the naming service on

host st eel rai n at port 2345:
C. >java ior.Namngdient -ORBInitial Hst steelrain -ORBInitial Port
2345

By default, the Java IDL ORB attempts to locate the naming service on the localhost for
applications and the codebase host for applets at port 900.

As convenient as this mechanism isto locate the COS Naming Service, it is a proprietary
solution. All ORBs will support the initialization service call but they locate services
using proprietary techniques. The techniques discussed above for locating the Java IDL
COS Naming Service using the Java IDL ORB do not work when using another vendor's
ORB or naming service. If your applications must run in a multivendor environment, the
next technique provides a mechanism for obtaining the initial naming context.

Naming context |OR -- Use the IOR that is printed out when the naming serviceis
created to obtain areference to the naming service using the stringification process
described earlier.

Thet naneser v process printsits IOR and the TCP port on which it islistening when it is

started:

>t naneserv

Initial Nam ng Context:

| OR: 000000000000002849444c3a6f 6d672e6f 72672f 436f 734e616d696e672f 4616d6
96e

67436f 6e746578743a312e3000000000010000000000000030000100000000000a73746
5

656c7261696e0007f 700000018af abcaf e000000023be59816000000080000000000000
00

Transi ent NameServer: setting port for initial object references to: 900

he initial namng context is obtained, it nust be narrowed to the

or g. ong. CosNami ng. Nam ngCont ext type. The foll ow ng
sni ppet uses the | OR passed in as the first conmand-line paraneter to
| ocate the COS Nami ng Service:

package i or;

i nport
i mport
i nmport
i mport
i nmport

or g. ong. CORBA. ORB;

or g. ong. CosNami ng. *;

or g. ong. CosNani ng. Nani ngCont ext Package. | nval i dName;
or g. ong. CosNani ng. Nam ngCont ext Package. Cannot Pr oceed;
or g. ong. CosNanmi ng. Nanmi ngCont ext Package. Not Found;

public class lorNsSCient {
public static void main(String args[])
t hrows Not Found, Cannot Proceed, |nvali dName

{

/[linitialize the ORB
OB orb = ORB.init(args, null);

org. ong. CORBA. (bj ect ref;
Nam ngCont ext ncRef;

/1 get nam ng context reference using |IOR

String ior = args[0];
ref = orb.string_to_object(ior);

[Inarrow reference to a Nam ngCont ext
ncRef = Nami ngCont ext Hel per. narrow(ref);

}

Unlike the initialization service, using the IORto |ocate the COS Nami ng
service works with any conbi nati on of vendors' ORB and COS Nami ng Service
i mpl ement ati ons.
Resolving an object reference
Oncetheinitial naming context is obtained, it can be used to locate registered objects. TheNam ngCont ext
CORBA interface defines the methods for creating new subcontexts, registering CORBA objects, and locating
CORBA objects:

- bi nd() -- Createsabinding of a name and an object relative within a naming context

r ebi nd() -- Unbinds the given name from an existing object (if such abinding is present) and bindsit to

anew object

resolve() -- Retrieves the object reference bound to the gi ven nane
new context() -- Creates a new, unbound nami ng context

bi nd_context() -- Binds a new subcontext to the nam ng service;

equi valent to creating a new subdirectory inside a directory
The foll owi ng sanpl es denonstrate how to use each method, and the follow ng
client-side code obtains a reference to the object using the conpound nane
si npl e-obj ect (where sinple is a nam ng context and object is the binding of
t he CORBA object):
package i or;

i nport org.ong. CosNam ng. *;

i mport org. ony. CORBA. ORB;

i mport org.ong. CosNam ng. Nam ngCont ext Package. Cannot Pr oceed;
i mport org.ong. CosNani ng. Nam ngCont ext Package. Not Found;

i mport ior.*;

public class Nam ngQient {
public static void main(String args[])
t hrows Not Found, Cannot Proceed, org. ong. CORBA. ORBPackage. | nval i dNan®,
or g. ong. CosNani ng. Nanmi ngCont ext Package. | nval i dName
{

Nam ngCont ext ncRef = //get initial context here

//create the nam ng path
NameConponent nanme[] = {
new NarmeConponent ("sinmple", ""),
new NarmeConponent ("object", "")

}s

/lresolve the path to a reference
org. ong. CORBA. (bj ect ref;
Si npl eCbj ect obj ;

r ef
obj

= ncRef . resol ve(nane);

= Si npl eoj ect Hel per. narrow(ref);
//'i nvoke net hods

obj . i nvoke();

}

In a filesystem concatenating the parent directory names and the fil enane
toget her using a slash (this picks your direction) forns the path to a file.

When using the nam ng service, the path to the object is forned using a
sequence of NanmeConponent instances, where each NaneConponent represents a

bi nding within the nam ng hi erarchy. Each NameConponent contains two strings:
id and kind. The nami ng service does not use these strings except to ensure
that each id is unique within the specified context. The id specifies the key
val ue for the binding, while the kind provides a description (usually an
enpty string).

Binding an object

The following server-side code publishes the object retrieved in the previous example. Thus, it publishesa

i or. Si npl e(bj ect implementation to thesi npl e- obj ect name within the naming service:
Nam ngCont ext ncRef = //get initial context here

Nam ngCont ext si npl eCxt ;
NarmeConponent si npl eNang[] = { new NaneConponent ("sinple", "") };

si npl eCxt = ncRef. new context();
try {
ncRef. bi nd_cont ext (si npl eNane, si npl eCxt);
} catch(Al readyBound ex) {
/lalready bound so resolve to it instead
obj Ref = ncRef.resol ve(si npl eNane) ;
si npl eCxt = Nami ngCont ext Hel per . nar r ow(obj Ref);

}
/l export the object to the nam ng service
NarmeConponent obj Nane[] = { new NaneConponent ("object", "") };

si npl eCxt . r ebi nd(obj Nanme, obj);

/1block to prevent programfromending and wait for client requests
Systemout.println("Ready for client sinple requests...");

This example uses acompound name that requires alittle care. A real naming service implementation will support
persistent names, which means a context can remain in existence long after the registered object has been removed
from the name space. Y our object registration code needs to handle the cases in which a parent naming context may
or may not currently exist, and preserve al bindingsif it does exist.

This example uses exception handling to efficiently handle both cases. The code assumesthesi npl e context is not
currently bound to the initial naming context and proceeds as follows:

1. Theapplication creates a one-element NameConponent array for thesi npl e naming context binding.

2. Theapplication creates a new, unbound naming context by invoking thenew_cont ext () method on the
root naming context. A Nam ngCont ext instance can only be created using another Nam ngCont ext .

3. Thenew Nani ngCont ext isbound to the root naming context under the namesi npl e using the
bi nd_cont ext () method.

4. |f acontext isaready bound to thesi npl e name, theNam ngCont ext bi nd_cont ext () method
generatesan or g. ongy. CosNam ng. CosNani ngPackage. Al r eadBound exception. Anticipating
this problem, the program catches this exception (if it occurs) and resolves the existing context using
resol ve(), justlikeresolving anormal object.

Once thesi npl e naming context is obtained from the naming service, aNameComponent array is built and bound
using theNami ngCont ext rebi nd() method.

Notice how Nam ngCont ext objects are published using thebi nd_cont ext () method while al other
CORBA aobjects are published using thebi nd() orr ebi nd() methods. A Nami ngCont ext can be published
using abi nd() method, but it will not be usable as a naming context binding with the naming service.

Other naming approaches

If using an IOR istoo crude and the COS Naming Service is too cumbersome, you may want to investigate the Java
Naming and Directory Service (JNDI) or the Inprise Web Naming Service. INDI provides ageneric API for
directory and naming services. The current incarnation of INDI (as of mid-January) contains a betaimplementation
of aCOS Naming Service provider. This provider enables you to bind, list, and resolve bindings using the standard
JNDI API, which can be much more simple and elegant than using the standard or g. ong. CosNam ng package.
The Inprise Web Naming Service uses a Web server to manage and publish CORBA object IORs. This makes
obtaining references as easy as specifying a URL and could potentially solve the problem of obtaining theinitial
naming context reference.

Both Inprise and lona provide proprietary naming facilities through the use of binding an object to aname at the
time of object construction. The name bindings are broadcast across the network through a proprietary
communication schemeto all properly configured ORBs. The end result is avery easy-to-use naming service
implementation in which the client application uses asingle, lightweight bi nd() method to resolve to a specific
object.

The limitations of thistype of naming scheme are;

1. Client hosts must be properly configured to receive binding broadcast notifications.

2. Anoabject can be bound to asingle name only.

3. Proprietary schemes will not work when using multiple-ORB implementations. This situation can occur
when using ORBs built into commercia products such as Web browsers, database servers, and application
servers aong with your custom applications written using your company's standard ORB -- not to mention
the combinations that result when integrating with your suppliers and customers.

Conclusion
CORBA provides two standard mechanisms for enabling client programs toobtain servant references: IORs and the
COS Naming Service. Asisnormally the case with open standards, software vendors have devel oped additional
naming service implementations. Choosing a naming service for your applications will depend on ORB vendor(s),
network topology, existing company software architecture standards, and your level of aversion to "proprietary
standards.”
This article discussed four object reference resolution mechanisms:
IOR -- The only mechanism that is truly ORB-independent
COS Naming Service -- Provides scalability and robustness
Inprise Web Naming Service -- Uses afamiliar naming convention (URL) to publish and resolve references;
potentially ORB-independent
Proprietary ORB naming services -- Provides a simple-to-program, robust naming solution
Good luck locating the object of your dreams. m

About the author

andy.krumel Andy Krumel graduated from the US Nava Academy and started hiscareer asanavd aviator.
However, after a seriesof enginefires, radio failures, and assorted other mishaps, a career in computer
programming looked morelong-lived.

Today, Andy isthe founder of K& A Software, arapidly growing, three-year-old Silicon Valley training and
consulting firm specidizing in Javaand distributed applications. Andy and his cohorts will do just about anything
to spread the word about Javas fantastic capabilities, from speaking at conferences, to teaching corporatetraining
classes, toeven writing an occasiona article. When not pontificating, Andy is squirreled away creating solutions
for oneof K&A's corporate clients.

(c) Copyright 1999 I Tworld.com, Inc., an IDG Communications company

Resour ces
- Download the complete sourcein zip format. Y ou will need Java 2 to run the code

http://www.javaworld.com/jw-02-1999/enterprise/jw-02-enterprise.zip

Sun's Java IDL documentation, which includes documentation covering the Java IDL AP, the naming

service, creating and using CORBA object references, and an introductory tutorial

http://java.sun.com/products/jdk/1.2/docs/quide/idl/index.html

Java 2 includes support for running CORBA server and client processes, including an implementation of a

CORBA-compliant transient naming service

http://java.sun.com/products/jdk/1.2/

Java 2 does not ship with an IDL-to-Java compiler so you must download it separately if you intend to

develop and implement ORB-based services. Accessing this page requires you possess a Devel oper

Connection account (joining isfree)

http://devel oper.java.sun.com/devel oper/earlyA ccess/jdk12/idItojavahtml

An excellent introductory tutorial to JavalDL is provided onlinein Sun's The Java Tutorial

http://java.sun.com/docs/books/tutorial/idl/index.html

The Java Naming and Directory Interface (JNDI) is astandard Java extension and provides applications

with aunified interface to multiple naming and directory services

http://java.sun.com/products/jndi/index.html

The CORBA/IIOP 2.2 Specification is available online

http://www.omg.org/corba/corbaiiop.html

The lona OrbixNames, |ona's implementation of the COS Naming Service is documented online

http://www.iona.com/products/sysman/orbixnames/fordevel opers.html

The VisiBroker Naming and Event Services, Inprise'simplementation of the COS Naming Service, is

documented online
http://www.inprise.com/techpubs/books/vbnes/vbnes33/index.html
Read the first-ever Enter prise Java column,”Revolutionary RMI: Dynamic class loading and behavior
objects," in the December issue of Javaworld
http://www.javaworld.com/jw-12-1998/jw-12-enterprise.html
Feedback: http://www.javaworld.com/javaworld/cgi-bin/jw-mailto.cgi 7 weditors@javaworld.com+/javaworld/jw-
02-1999/jw-02-enterprise.html+jweditors
Technical difficulties: http://www.javaworld.com/javaworl d/cgi-bin/jw-
mailto.cgi webmaster @] avaworld.com+/javaworl d/jw-02-1999/jw-02-enterprise.html+webmaster
URL: http://www.javaworld.com/jw-02-1999/jw-02-enterprise.html
Last modified: Monday, April 09, 2001

